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Abstract

Conventional jet algorithms are based on a deterministic view of the underlying hard

scattering process. Each outgoing parton from the hard scattering is associated with

a hard, well separated jet. This approach is very successful because it allows quan-

titative predictions using lowest order perturbation theory. However, beyond leading

order in the coupling constant, when quantum uctuations are included, determinis-

tic jet algorithms will become problematic precisely because they attempt to describe

an inherently stochastic quantum process using deterministic, classical language. This

demands a shift in the way we view jet algorithms. We make a �rst attempt at con-

structing more probabilistic jet algorithms that reect the properties of the underlying

hard scattering and explore the basic properties and problems of such an approach.



In high momentum transfer scattering processes, the concept of jets makes a connection

between the hadron-level observations and the underlying partonic theory. For \good" ob-

servables the theory is perturbatively calculable and, at lowest order (LO) in the coupling

constant, the predictions are deterministic due to the absence of quantum uctuations. Each

parton is associated with a high momentum jet. After \hadronizing" the parton, one ends

up with a collimated shower of hadrons. Often color strings of hadrons between the partons

are introduced to model the energy ows better. However, the underlying hard scattering

in such an approach is still classical. Conventional jet algorithms are based on these mod-

els. Their main purpose is to \invert" the hadronization and identify the underlying hard

scattering parton structure. Within the classical approach this is perfectly legitimate. In

fact, jet algorithms are often compared by how well they reconstruct the underlying partonic

structure. Moreover, experimenters use shower models such as HERWIG [1] to estimate their

theory/experimental uncertainties by hadronizing a parton in the detector simulation. Here

the jet algorithm is applied to estimate the mismeasurement of the original parton energy

and direction. One then uses such models to either \correct back" to the parton level or to

absorb these e�ects into the systematic uncertainties.

This philosophy is acceptable as long as quantum uctuations can be neglected. The

degree to which this approximation can be applied depends on both the experimental accu-

racy and on the kinematics of the event (i.e. well separated hard jets are, for all practical

purposes, classical.). However, when one counts jets using the classical jet algorithms, the

majority of the cross section in multi-jet events comes from the region where the jet clusters
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are as close to each other as allowed by the jet algorithm due to the collinear behaviour

of QCD. This means that quantum corrections are important as soon as the experimental

uncertainties become small enough. In recent years it has become apparent that one needs

at least next-to-leading order (NLO) perturbative calculations to describe the precise jet

data accumulated in current high energy scattering experiments, i.e. one is sensitive to the

quantum corrections. Applying the usual deterministic jet algorithms then leads to imme-

diate problems which are exactly associated with the stochastic nature of the underlying

scattering (i.e. each parton involved in the the hard scattering is no longer identi�able as a

jet.). Using shower models to correct back to the \original" parton energies might be mis-

leading. Furthermore, adding some arbitrary soft radiation or collinear fragmentation can

signi�cantly alter the jet energies and directions found using deterministic jet algorithms

rendering the theoretical predictions infrared unstable. Similarly, in the experiment a sin-

gle hit in the calorimeter should only be associated with a jet/cluster in a probabilistic

manner since small mismeasurements will change the assignment of calorimeter hits to jets.

These instabilities are reected in large hadronization corrections and large experimental

uncertainties.

The obvious way out is to introduce probabilistic jet algorithms to reect the quantum

mechanical nature of the hard scattering. On an event by event basis the algorithm will

give a probability distribution to observables in the event (e.g. transverse energy, number

of jets, jet-jet mass, etc.). This is contrary to classical jet algorithms which give a de�nite

value to the observables. There will be an immediate impact on the hadronization e�ects and
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measurement errors. For example, the number of jets found using deterministic jet algorithms

will always be an integer number. This number can vary on an event by event basis due to

uctuations in the hadronization process and the measurement errors (even if the underlying

hard scattering is kept �xed). However with a probabilistic jet algorithm, each jet topology

is associated with a probability (or equivalently the event contains a fractional number of

jets). Hadronization and measurement uncertainties will still alter the probability of �nding

a given jet multiplicity, but now will be far less important, reecting far more accurately the

properties of the underlying quantum process. This will have some inuence on observables

that depend on the number of jets in the event such as the identi�cation of top quark events.

Any quantum algorithm must revert back to the classical algorithm in the limit of well

separated, high energy jets (i.e. one of the jet multiplicities has a probability approaching

100%.).

Recently, Tkachov [2] has used event shape variables that satisfy calorimetric continuity

(jet discriminators) to describe the jet topology of the event. Any event shape observable

such as the C-parameter [3], that vanishes in the two-jet limit may be considered a three-jet

discriminator. These multi particle correlators are continuous and are also stable against

small variations of the input.

In the rest of the paper we will de�ne and explore the above concepts in some detail. Also

we will give an explicit example of an observable calculated with a probabilistic algorithm.

This example is taken from hadron colliders: the triple di�erential di-jet cross section.

In order to test our ideas and to examine how hadronisation corrections inuence the
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counting of the number of jets, we consider a simple one-dimensional toy model with two

partons of energies E1 and E2, separated in azimuthal angle, �, by �R, recoiling against

a colour neutral object at � = �. Typically, we choose E1 = 100 GeV and E2 = 50 GeV.

Although the formation of jets should not depend on the details of hadronisation, it is

important to have a semi-realistic model of how the partonic energy ow fragments into

hadrons. The simplest model of hadronisation is Feynman's \tube" model [4] where a parton

produces a jet of light hadrons uniformly distributed in rapidity along the jet direction. Light

hadrons are distributed in transverse momentum pT (again with respect to the jet axis) with

a gaussian density �(pT ) such that the average transverse momentum is controlled by the

parameter, �, that sets the hadronisation scale, hpT i = �. Reasonable choices of � lie in the

range � � 0:5� 1 GeV. We use a Monte Carlo approach to fragment the parton into several

hadrons which obey the transverse momentum constraint,
P

i ~pT i = ~0, where the sum runs

over the hadrons produced by the parton. Each individual parton \shower" produces O(10)

hadrons. This is repeated many times for each parton con�guration to generate a sample of

\data".

We examine two distinct jet algorithms that are representative of those commonly used

in high energy hadron collider experiments. In each case we use a cone size R = 0:7.

(a) The �xed cone [5]. Place the cone around the highest energy particle not already in a

jet and add up the energy

inside the cone. If E > Ecut, it is a jet. Repeat.

(b) The iterative cone [6, 7]. Place the cone around the highest energy particle not already
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in a jet. Find the energy weighted axis and move the cone to that location. Repeat until

jet stabilises. Repeat until no more jets are found, then resolve overlaps - i.e. for particles

that are in more than one jet distribute energy amongst jets or merge clusters. Add up the

energy inside the cluster and count jets with E > Ecut.

At tree level, both algorithms give the same prediction for the number of jets. If the

spacing between partons is less than the cone size, �R < R, then the partons coalesce and

only one jet is found. For all other values of �R two jets are observed. Once hadronisation

is switched on (i.e. � = 1 GeV), the number of jets observed depends on exactly how

the hadrons are distributed in azimuth. Generally, for �R � 0 and �R � 2R, either one

or two jets with E > 30 GeV are found. This is not always the case and sometimes the

hadronisation pattern will cause additional jets to be found. However, for �xed intermediate

values of �R, and particularly those values close to R, consecutive events will ip between

�nding one or two jets. Depending on the actual distribution of hadrons, the topology of the

event undergoes a catastrophic change. This is reected in a large variance on the average

number of jets found in the event after averaging over 10000 events. Figs. 1(a) and 2(a)

illustrate this for each algorithm. By the nature of the algorithm, an integer number of jets

is found in each event, but the average number (for �R � R) is close to 1.5 (with a standard

deviation of close to 0.5).

Varying the hadronisation scale � alters the details, but does not alter the gross feature:

The individual event is not representative of the average. The problem can be traced back
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Figure 1: The average number of jets observed as a function of the parton-parton separation

�R using the (a) �xed cone (b) moving �xed cone. The parton level results (� = 0) are

shown as solid lines, while the hadron level (� = 1) predictions are shown as a dashed line

joining data points with standard deviation obtained from a large number of hadronised

events.

to the way in which the jet algorithm is applied. In each case, the starting point is the most

energetic particle (or the least energetic in the case of the KT algorithm [8]). This choice is

very sensitive to collinear fragmentation, soft radiation, the details of the hadronisation and

also possible mismeasurement of the particle energy by the detector.

Any algorithm that requires an integer number of jets to be found in the event will have

the same problems. As discussed earlier, an approach in which a probability is associated

with each jet topology is more natural. We can easily adapt the existing algorithms to the

probabilistic approach by treating each hadron or calorimeter cell as the seed tower for the
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Figure 2: The average number of jets observed as a function of the parton-parton separation

�R using the (a) iterative cone (b) moving iterative cone. The parton level results (� = 0)

are shown as solid lines, while the hadron level (� = 1) predictions are shown as a dashed

line joining data points with standard deviation obtained from a large number of hadronised

events.

algorithm. Each starting point will generate a particular jet con�guration, and by averaging

over con�gurations we can obtain probabilities of �nding that particular jet. Because we

now consider a varying starting point for each jet, we denote such algorithms as moving.

The analogues of the two earlier jet algorithms are:

(A) The moving �xed cone. Center the cone on a calorimeter cell and add up the energy

inside the cone. If E > Ecut, it is a jet. Repeat. Repeat for all calorimeter cells.

(B) The moving iterative cone. Center the cone on a calorimeter cell. Find the energy

weighted axis and move the cone to that location. Repeat until jet stabilises. If E > Ecut

and the starting calorimeter cell lies within the cone, it is a jet. Repeat for all calorimeter
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cells. Note that even in the case of multiple clusters, there is never the issue of overlapping

cones. Each calorimeter cell contributes fully to each cone containing it.

Similar probabilistic algorithms could be constructed for the KT or Durham algorithm [8, 9].

In each case, each starting point (and each resulting jet energy) obtains a weight of 1=2R

to normalise the probability of �nding a jet. To compute the number of jets, we count the

number of calorimeter cells that give rise to an allowable jet and divide by the number of

cells in 2R of azimuth. Even at the parton level, the algorithms behave slightly di�erently.

For �R < R, each calorimeter cell within R of the �nal jet axis reconstructs the energy

and direction of the parton for algorithm (B) and a single jet is found with energy E1 +E2.

However, for the moving cone (algorithm (A)), sometimes the cone contains one parton and

sometimes two. That is to say, sometimes we �nd two jets, with energies E1 and E2 and

sometimes a single jet with energy E1 + E2. For 2R > �R > R, both algorithms �nd a

combination of one-jet and two-jet con�gurations - calorimeter cells between the partons

are more likely to result in one-jet con�gurations while those outside the partons will �nd

single parton jets. For well separated partons, �R > 2R, then we always �nd two jets with

energies E1 and E2. This is as it ought to be, for events with two well separated clusters

should be classi�ed as two jet events with a very high probability. Only in the intermediate

regions should the one or two jet topologies have probabilities far from either 0% or 100%. At

�R = R, we see that each algorithm gives the average number of jets as 1.5. Note that this

is obtained with a single event and the individual event is now representative of the average.

While hadronisation will inuence the formation of jets and will alter the one and two-jet
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probabilities, there will no longer be the catastrophic swapping between topologies. This can

be seen in Figs. 1(b) and 2(b) where the average number of jets produced in the same data

sample of hadronised events used earlier is plotted against the parton-parton separation,

�R. In all cases, the uctuations are signi�cantly smaller compared to those obtained with

the corresponding conventional deterministic algorithm. Varying the hadronisation scale �

and the jet energy cut Ecut changes the details of the plots, but in all cases, the probabilistic

algorithms give smaller variances on hNJi than the deterministic ones. We also see that the

moving �xed cone algorithm (A) is rather good for counting clusters with an energy bigger

than some threshold, but that the moving iterative cone algorithm (B) has a good jet energy

resolution.

As an example of how probabilistic algorithms may be applied to calculate more realistic

quantities, we consider the triple di�erential dijet distribution. Here, one jet with transverse

energy ET1 is produced in a central rapidity strip 0:1 < j�1j < 0:7, with a second tagging jet

with ET2 > ET1=2 in a more forward rapidity slice 1:2 < j�2j < 1:6. This observable has been

studied both experimentally [10] and theoretically [11]. We use parton level Monte Carlo

JETRAD [11, 12] with the moving �xed cone algorithm (A) and allow one cone of radius

R = 0:7 to move in the central region and one in the forward region. The rapidity cuts are

applied to the cone axis. Note that this extends the range of the allowed parton rapidity

in a probabilistic manner. For each cone position, the partonic energy inside the cone is

calculated and entered in the distribution (with weight 1=�R2). The results are shown in

Fig. 3, where we also show the distribution obtained using the EKS jet algorithm [13] (and
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Figure 3: The leading (LO) and next-to-leading order (NLO) predictions using both the mov-

ing �xed cone and the EKS jet algorithm [13] for
R
d�1d�2d�=dETd�1d�2 for 0:1 < j�1j < 0:7

and 1:2 < j�2j < 1:6. We use CTEQ4M parton distributions [15] with renormalisa-

tion/factorisation scale � =
P

ET =2.

Rsep = 1:3 [14]). Events are triggered by requiring a summed ET of at least 80 GeV is

registered in the calorimeter.

We could, for instance, also construct more involved correlators such as the two-cluster

mass using one of the moving cone algorithms. Here there would be two cones moving over

the detector and one would compute the mass of the pair. It is important to note that the

cones are not mutually exclusive. In fact, there will be self correlations between overlapping

cones. However, particles in the overlap region are assigned to both cones and there is never

any question of which particle goes to which cone.

We have demonstrated that the idea of probabilistic jet algorithms can be applied to jet
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events in a sensible manner. At all stages of the event evolution (hard parton scattering,

hadronization and measurement) the probabilistic jet algorithm will give a probability to the

observable that is close to the average on an event by event basis. This is in contrast to the

deterministic algorithms, which on an event by event basis will uctuate signi�cantly. As

the underlying quantum mechanical hard scattering is by de�nition stochastic these results

should not come as a surprise.

EWNG thanks the Fermilab Theory Group for their kind hospitality during the period

in which this research was carried out.
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